top of page
Search

Rasika Venkatesh

  • vitod24
  • Oct 20
  • 2 min read

Integrating Imaging-Derived Clinical Endotypes with Plasma Proteomics and External Polygenic Risk Scores Enhances Coronary Microvascular Disease Risk Prediction


Rasika Venkatesh (1,), Tess Cherlin (2), Penn Medicine BioBank (3), Marylyn D. Ritchie (4), Marie A. Guerraty (5), Shefali Setia-Verma (2) (1) Genomics and Computational Biology Graduate Group, University of Pennsylvania, Philadelphia, PA, USA (2) Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA (3) Penn Medicine Biobank, University of Pennsylvania, Philadelphia, PA, USA (4) Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA (5) Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA


Coronary microvascular disease (CMVD) is an underdiagnosed but significant contributor to the burden of ischemic heart disease, characterized by angina and myocardial infarction. The development of risk prediction models such as polygenic risk scores (PRS) for CMVD has been limited by a lack of large-scale genome-wide association studies (GWAS). However, there is significant overlap between CMVD and enrollment criteria for coronary artery disease (CAD) GWAS. In this study, we developed CMVD PRS models by selecting variants identified in a CMVD GWAS and applying weights from an external CAD GWAS, using CMVD-associated loci as proxies for the genetic risk. We integrated plasma proteomics, clinical measures from perfusion PET imaging, and PRS to evaluate their contributions to CMVD risk prediction in comprehensive machine and deep learning models. We then developed a novel unsupervised endotyping framework for CMVD from perfusion PET-derived myocardial blood flow data, revealing distinct patient subgroups beyond traditional case-control definitions. This imaging-based stratification substantially improved classification performance alongside plasma proteomics and PRS, achieving AUROCs between 0.65 and 0.73 per class, significantly outperforming binary classifiers and existing clinical models, highlighting the potential of this stratification approach to enable more precise and personalized diagnosis by capturing the underlying heterogeneity of CMVD. This work represents the first application of imaging-based endotyping and the integration of genetic and proteomic data for CMVD risk prediction, establishing a framework for multimodal modeling in complex diseases.

 
 
 

Recent Posts

See All
Poster #9 - Yuheng Du

Cell-Type-Resolved Placental Epigenomics Identifies Clinically Distinct Subtypes of Preeclampsia Yuheng Du, Ph.D. Student, Department of Computational Medicine and Bioinformatics, University of Michig

 
 
 
Poster #15 - Jiayi Xin

Interpretable Multimodal Interaction-aware Mixture-of-Experts Jiayi Xin, BS, PhD Student, University of Pennsylvania, PA, USA Sukwon Yun, MS, PhD Student, University of North Carolina at Chapel Hil

 
 
 
Poster #14 - Aditya Shah

Tumor subtype and clinical factors mediate the impact of tumor PPARɣ expression on outcomes in patients with primary breast cancer. Aditya Shah1,2, Katie Liu1,3, Ryan Liu1, 4, Gautham Ramshankar1, Cur

 
 
 

Comments


bottom of page